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Numerical simulations [356] performed in the framework of homogeneous
turbulence have shown a persistence of anisotropy at the small scales. How-
ever, it should be noted that this anisotropy is detected only on statistical
moments of the velocity field of order three or more, with first- and second-
order moments being isotropic.

)

5.3.2 Anisotropic Models

Here we describe the main models proposed in the anisotropic framework.

Except for Aupoix’s spectral model, none of these take explicit account of

the backward cascade mechanism. They are:

1. Aupoix’s spectral model (p.153), which is based on the anisotropic
EDQNM analysis. The interaction terms are evaluated by adopting a
preset shape of the energy spectra and subgrid mode anisotropy.. This
model, which requires a great deal of computation, has the advantage of
including all the coupling mechanisms between large and small scales.

2. Horiuti’s model {p.154), which is based on an evaluation of the anisotropy
tensor of the subgrid modes from the equivalent tensor constructed from
the highest frequencies in the resolved field. This tensor is then used to

modulate the subgrid viscosity empirically in each direction of space. This-
is equivalent to considering several characteristic velocity scales for rep-
resenting the subgrid modes. This model can only modulate the subgrid -
dissipation differently for each velocity component and each directi_cfifl ;

of space, but does not include the more complex anisotropic transfe
mechanisms through the cufoff.
3. The model of Carati and Cabot (p.155), who propose a general form ¢
the subgrid viscosity in the form of a fourth-rank tensor. The component
of this tensor are determined on the basis of symmetry relations. However
this model is a applicable only when the flow statistically exhibits an axial,
symmetry, which restricts its field of validity. o

4. The model of Abba et al. (p.156) which, as in the previous exa’mp'l:é, _’

considers the subgrid viscosity in the form of a fourth-rank tensor. Th
model is hased on the choice of a local adapted reference system fo
representing the subgrid modes, and which is chosen empirically wher
the flow possesses no obvious symmetries.

5. Models based on the idea of separating the field into an isotropic part:
and inhomogeneous part (p.157), in order to be able to isolate the contri ;

bution of the mean field in the computation of the subgrid viscosity, for
models based on the large scales, and thereby better localize the informa-
tion contained in these models by frequency. This technique, however, i
applicable only to flows exhibiting at least one direction of homogeneity.

b
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Aupoix Spectral Model. In order to take the anisotropy of the subgrid
scales into account, Aupoix [7] proposes adopting preset shapes of the energy
spectra and anisotropy so that the relations stemming from the previously
described EDQNM analysis of anisotropy can be used. Aupoix proposes the
following model for the energy spectrum:

E(k) = Koe®*k~Bexp {f(k/ka)} : (5.50)

where

F(z) = exp [—3.5:;2 (1 2. .exp {6:1: +1,2— /19622 — 33.62 + 1.4532})} :
(5.51)

This spectrum is illustrated in Fig, 5.2. The anisotropy spectrum is mod-
eled by: )

— b |5k _OB(K)
Hij(k) = b; [‘J_i_E(k)_ ok ]

x {1#7{(15—11];; 1)%(]?(3)]){(&)”/3_1}},

(5.52)

- where F(li) = V x T, Kyax is the wave number corresponding to the energy
" spectrim maximum, and % the Heaviside function defined by:

0 if <0

1 otherwise °’
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‘Fig. 5.2. Aupoix spectrum (kg = 1000)._.
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2 2
yi(j}':l = V;Ei}gl )
2 2)
Vg;:z.z = *Vg(izk )
vy =0 . - (5.62)

The tensor 1) therefore contains 15 independent coefficients, which raises
the number of coefficients to be determined to 40.

Further reductions can be made using the symmetry properties of the
flow. For the case of symmetry about the axis defined by the vector n =
(n1,m2,n3), the authors show that the model takes a reduced form that now
uses only four coeflicients, Cy, ..., Cy:

— 2
Trfij = —20151‘3' — 205 (nﬁj + 8;ny; — ggknkéi,-)

1 N
- Cy (ninj - -:);nzéij) Spng — 2Cy (ﬁnj + TL@'Fj) § (5.63)

where 8= Sik-'l'lk; and = Q,;knk.

Adopting the additional hypothesis that the tensors vV and p(2) verify

the Onsager symmetry relations for the covariant vector n and the contravari-
ant vector p: ' i
5

1 1
Vz‘(jigl(n) = yk(:li}j(n) )

V() = v (n)

(1)

1)
Vi(jioz(P) = Vi (=p) :
2 2 )
ijzgl(p) = Vi(cii}j(_p) z . (5.64)
we get the following reduced form:
d <lf o=l :
Tij = =218y ~ 2mn Sy (56?)

where vy and v, are two scalar viscosities and

=i 1 s 1. L _ & =l
S ) (nis]‘ =+ 92113) — ,—,Esknk(ﬁj, LS“ = Sij - Sij
13 3n ) _
Carati then proposes determining the two parameters vy and 1, by an
ordinary dynamic procedure.

Model of Abba et al. Another tensor formulation was proposed by Abba

et al. [1]. These authors propose defining the subgrid viscosity in the form of
the fourth-rank tensor denoted v;jx;. This tensor is defined as the product of

a scalar isotropic subgrid viscosity vy, and an fourth-rank tensor denoted C,.
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whose components are dimensionless constants which will play the role of
the tcalar constants ordinarily used. The tensor subgrid viscosity vy thus
defined is expressed: )

Vijit = Cijkitiso = an,sam&jﬁakaﬂi,e Viso (5.66)
o,

where a;, designates the ith component of the unit vector a, (a=1,2,3),
Cap is a symmetrical 3 x 3 matrix that replaces the scalar Smagorinsky
constant. The three vectors a, are arbitrary and have to be defined as a
function of some foreknowledge of the flow topology and its symmetries,
‘When this information is not known, the authors propose using the local
framework defined by the following three vectors:

u V{uf) xu
=y A= T
u’ [V(Jul?) x ul

The authors apply this modification to the Smagorinsky model. The scalar
viscosity is thus evaluated by the formula: '

az =as Xay . (567}

| Vi = &S] . (5.68)
The subgrid tensor deviator is then modeled as:
-2 == 2. —2 = ;
Tidj = -2 ZCiJ'HA |S1Sk + -:);52'_-,'4 Crnrmakt)S|Sh - (5.69)
k,l
The model constants are then evaluated by means of a dynamic procedure.

Models Based on a Splitting Technique. Subgrid viscosity models are

- mostly developed in the framework of the hypotheses of the canonical anal-
~ ysis, 4.e. for homogeneous turbulent flows. Experience shows that the per-

formance of these models declines when they are used in an inhomogencous
framework, which corresponds to a non-uniform average flow. One simple
idea initially proposed by Schumann [298] is to separate the velocity field
into inhomogeneous and isotropic parts and to compute a specific subgrid
term for each of these parts.

In practice, Schumann proposes an anisotropic subgrid viscosity model
for dealing with flows whose average gradient is non-zero, and in particular
any flow regions close to solid walls. The model is obtained by splitting the
deviator part of the subgrid tensor 79 into one locally isotropic part and one
inhomogeneous:

T = —2ugs (S35 — (Siy)) = 202, (55) (5.70)

where the'angle brackets (.) designate an statistical average, which in prac-
tice is a spatial average in the directions of homogeneity in the solution.
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The coeflicients vy and 15, are the scalar subgrid viscosities representing a
locally isotropic turbulence and an inhomogeneous turbulence, respectively.
Moin and Kim [245] and Horiuti [138] give the following definitions:

Vegs = (C{A_)‘E \/2 (Eza . (313” (Eﬁ o (EEJ)) . (5.71)

|4 gs (0221—2)2 2<§lj><§ij.> 1 (5'72)

where '} and Cy are two constants. Horiuti recommends C; = 0.1 and Cy

= 0.254, while Moin and Kim use 7 = Cz = 0.2b4. The isotropic part is a -

function of the fluctuation of the viscosity gradients, so as to make sure that
the extra-diagonal components thus predicted for the subgrid tensor cancel
out on the average over time. This is consistent with the isotropic hypothesis.

The two characteristic lengths A and A, represent the cutoff lengths for
the two types of structures, and are evaluated as:

B(x) = (G122 Bs) /(1 - exploue/A0)) (573

Ay (2) = As(1 — exp([eur /AV]%)) (5.74)

where z is the distance to the solid wall, A3 the cutoff length in the direction
normal to the surface, and u, the friction velocity at the surface (see Sect.
9.2.1). The constant A is taken to be equal to 25.

This model was initially designed for the case of a plane channel flow. It |

requires being able to compute the statistical average of the velocity field, and

thus can be extended only to sheared flows exhibiting at least one direction of

homogeneity, or requires the use of several statistically equivalent simulations
to perform the ensemble average [48, 51]. '

Sullivan et al. {321] propose a variant of it that incorporates an anisot-
ropy factor (so that the model constant can be varied to represent the field
anisotropy better): :

— 20557545 — 20555 Sis) (5.75)

The authors propose computlng' the viscosity vg,, as before. The vy

term, on the other hand, is now calculated by a model with one evolution
equation for the subgrid kinetic energy (see equation (4.108) in Chap. 4). Only
the subgrid kinetic energy production by the isotropic is included, which is

equivalent to replacing the JJ term in equation (4.108) with

2vsgsy (Si5 — (Si)) (Sus — (Bi)) - (5.76)

The authors evaluate the anisotropy factor from the shearing rates of the
large and small scales. The average per plane of ﬂuctuatwn homogeneity of
the resolved strain rate tensor, calculated by
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\/2 ij. — z] ) (gij - (§%J>)> s (5'77}
is used for evaluating the shear of the small scales. The shear of the large
scales is estimated as

8% =4/2(Si;)(Sy;) - (5.78)
The isotropy factor is evaluated as:

SI

15 (5.79)

y=



